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STRESSES AND DISPLACEMENTS IN AN ELASTIC-PLASTIC WEDGE

SUMMARY

An elastic-perfectly plastic wedge of an incompressible isotropic material in

the state of plane strain is considered, where the stress-strain relations of

Prandtl-Reuss are employed in the plastic domain. For a wedge (with an

included anglef 3 ) subjected to a uniform normal pressure on one boundary,

the complete solution is obtained which is valid in the range 0</3<1; this

latter limitation is due to the character of the initial yield which depends on

the magnitude of . iNumerical results for stresses and displacements are
7r

given in one case (/3= 4) for various positions of the elastic-plastic

boundary.

INTRODUCTION

Although the general theory of plane strain for rigid, perfectly plastic material

(unrestricted plastic flow) and its application have been successfully explored

in recent years , complete solutions to problems of plane elastic-plastic strain

(contained plastic deformation) have been possible in only a few cases, where

the elastic-plastic boundary is determined a priori by symmetry considerations.

References to existing solutions of plane elastic-plastic strain (in the theory of

perfectly plastic solids) may be found in Prager and Hodge (1, Ch. 4 and 7),
p 2

Hill (2, Ch. 5), and in a recent paper by Shaffer and House (3) Even for

axi-symmetric problems, such as the thick-walled circular cylinder subjected

to internal pressure (1, Ch. 4), a complete solution in closed form can be

deduced only if the material is assumed to be incompressible in both the elastic

and the plastic ranges; otherwise, the integration of the differential equations

involved is accomplished by numerical methods.

See, for example, reference (1), Chapters 5 and 6; and reference (Z),
Chapters 6, 7, 8 and 9. Numbers in parentheses refer to the bibliography
at the end of the paper.
Available solutions obtained by total strain (deformation) theories of plasticity,
as in (4), are ruled out here. Reference (4) was called to the author's

attention by Professor W. Prager.
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The present paper employing the stress-strain relations of Prandtl-Reuss,

is concerned with the elastic, perfectly plastic solution of an incompressible

isotropic wedge in the state of plane strain, subjected to a uniform normal

pressure (assumed to be monotonically increasing with time) on one boundary

only (Fig. 1). As the character of the initial yield and the locus of the elastic-

K" plastic boundary depend on the nature of the load, as well as on the included

wedge angle /3 , the present analysis is confined primarily to wedge regions

where/3<T . A complete solution (stresses and displacements) is given for a

wedge regionOte</3<- subjected to a uniform normal pressure, as shown

in Fig. 1, and numerical results are plotted for the case when /3= 7r . In

Ui the limit, the stress distribution reduces to the solution of the corresponding

problem of a rigid, perfectly plastic material (1, pp. 156-158).

We recall that in the state of plane strain, here referred to cylindrical coordinates

(r, 0, ; ), the radial and tangential displacements LAband 1A 0are at all times

independent of z (the z-axis is taken perpendicular to the plane of the cross-

section in Fig. 1), and that L = 0. The non-vanishing components of strain

are given by

and since 0 = , it follows that

[27

for an incompressible material. In the absence of body forces, the stress

differential equations of equilibrium which are not identically satisfied may be

written as

a S -0 + 3
- + 0 3a7
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where the components of the stress deviation tensor are related to the non-

vanishing components of the stress tensor {ta, Qr C , c} b

S= -, -S a. '7S-+
%-%-s~ Se ss-o-s Z- - -_% %-47

and the mean normal stress S , on account of the condition of incompressibility,

is determined from the differential equations of equilibrium.

While equations [i7 to [4] are valid in the elastic, as well as the plastic

domain, the stress-strain relations in the elastic and plastic ranges are furnished

Irespectively by Hooke's law, and the stress-strain law of Prandtl-Reuss which,

for an incompressible material, reads

[5]
4, a C

In Z5], ) is a scalar factor which, in general, depends on the coordinates as

well as time t , dot denotes differentiation with respect to time, and (i is the

1} shear modulus of elasticity. In addition, the Mises yield condition for the state

of plane strain reduces to

S +-S S + . [

where is the yield limit in simple shear.

THE FULLY ELASTIC SOLUTION

The displacement field for an elastic incompressible isotropic material in the

state of plane strain, referred to cylindrical coordinates ( r, 0, Z ) is
3

characterized by

For a discussion of the general equations of linear elasticity for an incompressible

material, see (5, Section 3). -3-



+ + 1 0

where - +- . The solution of 7 for a wedge

subjected to uniform tractions may be written as

-'L ~(a CA- 2 + CA,;, " 8a1

S=2 (b ote) /-9]

from which, by f-4. and Hooke's law, we have 4

fio]

zi O

0- + a ( ~zeC C,.

For future purposes, we first record the values of the constants a , 6

C , and Ot when solutions [97 and [-iO7 are subjected to the boundary

conditions

,- ar C(,) =el

4The components of the stress tensor, as given by [9] and [10], together
with the special results [14], are given in (6, pp. 123-125).

-4-



and then deduce, as a special case, the values of the constants appropriate for

a wedge of included angle 0 </3<21T , and uniformly loaded on one

boundary. Thus, the constants of integration determined by [11lJ are

+ ir [CM C" x 0.) & .2ej 2-

1'.

Cr +{O3. L

C -t • io)•Aa- *~,

V -

L 2 -(.- _ o,) ... ,- ,

+ +

l -5-



where

For the special case shown in Fig. 1, i.e., when , = 0,

,and =' 0, the aboe results reduce to

6= -16 + r[14]/
4 A

THE INITIAL YIELD AND THE ELASTIC-PLASTIC BOUNDARY

Sinc e S=-S the yield condition Z6]7 becomes

whih, y 4io. an Z1,7 orthe wedge shown in Fig. 1, may be put in the form

An examination of (16], together with its first and second derivatives, reveals

that, depending on the magnitude of the wedge angle /3, assumes its

maximum at different values of 8. Thus, in the range 0 <A < anr, plastic

flow will first set in at one or more values of e (0 <_6:5/) , as given in Table 1.

For example, in the range 0<7/3 <j~ is a mimimum at E) and will

attain its maximum simultaneously at 0 =0 and 0 =/A . For /3 the

left-hand side of [16] is independent of 8 and the entire region becomes

plastic when the load reaches the value (Z /e)

-6-



In the remainder of this paper, attention will be confined to wedge regions of

which the included angle has the range 0< 1 K As seen in Table 1,

yielding for this range of JA will begin simultaneously at the outside surfaces

when the pressurehas reached the vt.lue

A/- * "k t/ 1 [17]

TABLE i

Values of 0 for which £ in [161, in the range 0 </3< . T

is a maximum.

Range of the Wedge Values of 0, where
Angle Yielding Will Initiate

- </-3 < eo -- _

3T.Af agee 0<9<
Aa

For a pressure 16>/ , a portion of the wedge region becomes plastic, and

since the yield condition is independent of A , the elastic-plastic boundary must

*1

be a wedge bounded by 87 and 0 a indicated in Fig. 1.

-7-



THE ELASTIC-PLASTIC SOLUTION

In the elastic region , - 8 < A the solution is still of the form [8], ['9]

and [10], but the boundary conditions are now

S18]

44
%{6)+ (;6 )

as well as the conditions for conditions for continuity of stresses in the form
ll7 w i th E) and 0 replaced respectively by and With the use

1 2 2
of the latter four conditions, the coefficients O. , C , c , and A (as functions

of and '4) may still be written in the form /1Z/, where now , , O,

and Z refer to the normal and shearing components of stress at the elastic-

plastic boundaries. Here, we also note that according to [107, [8], and /z],
at a generic point P in the elastic domain

A. 8 .0... [19]7

Since by [9] and fii0], the components of stress in the elastic region do not

involve 4- , continuity of the stresses at the elastic-plastic boundaries demands

that these quantities remain independent of 4, throughout the wedge. Hence,

the stress differential equations of equilibrium [3] reduce to

ate + ( 00 /20a/

ass- =0 /20b/

which hold in the elastic, as well as the plastic regions 0 and

Differentiating the first of the above with respect tot ,

combining (after multiplication by ,X ) the resulting equation with /20a/, and

-8-



making use of the stress-strain relations of Prandtl-Reuss, and the incorpress-

ibility relation [7c], there results the following differential equation for the

radial displacement in the plastic domain:
radiaa

+3 [2 l]a,,e

Since the loading is assumed to increase monotonically with time, as in previous

elastic-plastic investigations, it is convenient to interpret the dot as indicating

differentiation with respect to $, which, when necessary, will be identified

with either or

As radial slip is not permissible along the elastic-plastic boundaries, it follows

that the displacement L must be a linear function of A- also in the plastic

domain, or simply of- the form

4t. = ( e, €)/z 122-

Substitution of f227 into [zi, followed by an integration with respect to 4),

yields

0

the homogeneous solution of which, except for a factor of 4- , is of the form

[8a].. Continuity of t (or U4, ) at the elastic-plastic boundaries requires

r the vanishing of any particular solution of [23] which, since #0 , is

equivalent to o, or

>1 06(4) [4]

Thus, by [z] and 7c], the displacements ' and in both the

elastic and plastic domains are of the form [8a, bJ, which, together with

-9-



[19], imply the truth of

O<;z,, [25]

at P , for all states of contained plastic deformation. Moreover, in view

of [19], [24], Z25], and the continuity of stresses at .1 and the stress-

strain law of Prandtl-Reuss [6,] demands that at

According to Z25], S, and So have the same absolute value throughout

the wedge. Hence, the quantity ( S- So ) = -zSo and, with the aid of the

Mises yield condition, [Z0a] in the plastic domain becomes

.2 [ [7

Integration of [27] together with [15] and [Z26 result in

281
1!: se (o, ): - ..,.c., ,= ±k hC..,,. (o-')

where ' =( ') , and the question of the appropriate signs in each of the

two plastic regions will be disposed of presently. The mean normal stress,

in the plastic domain, is determined by substituting [28] into [zOb], which

leads to 0 = 0, or

S s (9) [29]

I ,

i - 10-



The stress tensor in the plastic regions 0 ?_ and 19 :0! /3 ,in

addition to fulfilling the continuity requirements at and must also

conform to the boundary conditions

,. [3o27
r= 0-3' 0

respectively. Substitution of [28] and [29] into each of the conditions

[30]7 yields, respectively

0 J T 0 o< €e6, [31a1

and

"i ' , s = .-k , [31bJ:

in each of the two plastic regions. Guided by the fact 5 that the lateral pressure

bends the wedge so as to produce a tensile radial stress on 0 = 0, and a'

compressive radial stress on 8 = /3 , we choose the lower sign in [28] and

[31a for the plastic region 0 < 19 , and the upper sign in [28] and [31b]

for the region 96 <_ /3 . In this manner, we finally obtain the following stress

distribution in the two plastic regions:S =-s,= kc,o ,s =o

a-0 < 8 [32]

and

IA =- s kC64. 2(o-3) 1 03

F,) s -k.

5This remark is similar to that offered in (1, p. 157) for a wedge of rigid,
perfectly plastic material.
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Continuity of the stresses at the elastic-plastic boundaries, together with boundary

conditions [18] for the stresses in the elastic region 56< < , require the
continuity of the mean normal stress at 4,1 and 42* Hence, by fl0j, f32J

and [33., we have

[34]

where b and O are of the form given in [12], with 0 and 0 replaced

by I and 4,2 ; also, by [32] and [33], the quantities

and C in Z12] are

and

21.

Elimination of / from Z-4I leads to a single equation which, after considerable

manipulation, reduces to

#,+ =/3 Z-36,

revealing the interdependence of 41 and 4,z . Thus, in what follows, one of

the elastic-plastic boundaries, i.e., will be identified with 4,, and the

other, .; with /A- 4')

In summary, a statement of the complete solution of the problem is as follows:
The displacements t and U throughout the wedge ( 0 <9 .//3 ) are of the

form [8a, b/; the stresses in the elastic region e e (j-€) are of the

form [IO.] and Z91; the stresses in the two plastic regions 0 ef -¢ and

(A/~- ~/) 3 , are given, respectively, by [327 and /33]; and the coefficient

functions a., b , C ,and A are of the form [12], with Q , , a ,

" given by Z35], and I and 0 (as well as and replaced,

respectively, by 4 and (/3- 4,). Also, the functional relation between the

-12-
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Fig. 1.: Narrow wedge under a uniform
lateral pressure.

0.6

p ____________

- 0.5
k

0.41
10 20 0 40 050

Fig. 2: Lateral pressure /Iversus elastic-
plastic boundaries, 0 <,6 134

and 6) , for K =

-13-



_

0.8

0.6

0.4

2 k

0.2

0.0

-0.2

-0.4

-0.6 - - - 22.!0

-0.8

I--.0

l 100 200 300 400 500

-14-
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lateral pressure A and the elastic-plastic boundary 0 = , deduced with

the aid of [36] from either of [34], is given by

1:. In the limit of fully plastic state, the components of stress in the two plastic

regions, given by [32] and [33], reduce to the known results for a wedge of
a rigid, perfectly plastic material, where Nb .=  (separating the

two plastic regions) is a line of stress discontinuity.

NUMERICAL EXAMPLE - CONCLUSION

T
We now consider a numerical example and assume /3 = - For this particular

case, Fig. 2 shows the values of the elastic-plastic boundaries and (A- @)

corresponding to given values of which, in the range of contained plastic

deformation, is bounded by - and * The resulting stress distributions

and displacements, in this case (/43 - p s

shown in Figs. 3 to 9.

Ii In conclusion, it may be mentioned that while the validity of the foregoing elas tic-

plastic solution is limited to wedge regions with included angle /3< R , many

features of the analysis presented are also applicable to other ranges of values

of /3 and may be extended to cover wedge regions exposed to more general

uniform surface tractions.
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